Causal Poisson bracket via deformation quantization
نویسندگان
چکیده
منابع مشابه
2 00 1 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization
We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.
متن کامل0 Poisson bracket , deformed bracket and gauge group actions in Kontsevich deformation quantization
We express the difference between Poisson bracket and deformed bracket for Kontsevich deformation quantization on any Poisson manifold by means of second derivative of the formality quasiisomorphism. The counterpart on star products of the action of formal diffeomorphisms on Poisson formal bivector fields is also investigated. Mathematics Subject Classification (2000) : 16S80, 53D17, 53D55, 58A50.
متن کاملDeformation Quantization of Pseudo Symplectic(Poisson) Groupoids
We introduce a new kind of groupoid—a pseudo étale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantizatio...
متن کاملPoisson Sigma Models and Deformation Quantization
This is a review aimed at a physics audience on the relation between Poisson sigma models on surfaces with boundary and deformation quantization. These models are topological open string theories. In the classical Hamiltonian approach, we describe the reduced phase space and its structures (symplectic groupoid), explaining in particular the classical origin of the non-commutativity of the strin...
متن کاملDeformation quantization of Poisson manifolds in the derivative expansion
Deformation quantization of Poisson manifolds is studied within the framework of an expansion in powers of derivatives of Poisson structures. Using the Lie group associated with a Poisson bracket algebra we find a solution to the associativity equation in the leading and next-to-leading orders in this expansion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Geometric Methods in Modern Physics
سال: 2016
ISSN: 0219-8878,1793-6977
DOI: 10.1142/s0219887816501048